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Further investigation of the Karle-Hauptman determinants leads to several new relations: the DN deter- 
minant is simply related to interatomic vectors; also obtained is a probabilistic restriction on the atomic 
positions inside the algebraically allowed regions, as defined by von Eller. On the other hand new Gram 
determinants are defined and shown to be useful in relating moduli, phases and interatomic vectors. A 
practical application is given of fitting a stereochemically known fragment in the unit cell. 

The aim of this paper is the study of useful properties 
of new Gram determinants (1) in connexion with 
probabilistic relations and with the notion of 'for- 
bidden regions' introduced a few years ago by von 
Eller (1962, 1964) and implicitly by Goedkoop (1952). 
These authors have shown that the use of the positivity 
of a Kar le -Hauptman (K.H.) determinant associated 
with a partial structure can yield information about 
the atomic positions from the structure factors involved 
in the determinant. In this paper we report further 
results on probabilistic properties of K.H. deter- 
minants, as well as on new forms of determinants 
dealing with the following related topics: forbidden 
regions; use of stereochemical information. Indeed, (2) 
leads to a K.H. determinant which enables new phase 
restrictions to be deduced from the observed moduli. 
However, if one wants to introduce additional a priori 
information, the Vp set can be adapted accordingly to 
this information. This is the main idea underlying this 
paper. 

I. Recall on Gram determinants and probabilistic theory 

(a) Gram determinants 
Let V1,V2,...,Vm be m vectors in an N-dimensional 

vector space, the associated Gram determinant is 
defined by the scalar product matrix U: 

i(v  v,) vm)l 
Dm = D(V 1, V 2 ,  • • . ,  V m )  : Det U = 

I(Vm V l ) . . . ( V r a  Vm)l 
(1) 

These determinants were first introduced in crys- 
tallography by Kitaigorodsky (1961) and von Eller 
(1955). The Vp vector is defined by 

N 
Vp = ~ gj exp (2rciHp. ri)e ~ p = 1,...,m (2) 

j = l  

where N is the number of atoms in the unit cell, 
{e j} is an orthonormal flame of the N-dimensional 

vector space, rj is an atomic position, gj=f~/l/(Z,f 2) 
where J~ is the atomic scattering factor of the j th atom, 
Hp is a reciprocal-space lattice vector. 

The scalar products (Vp. Vq) are then the unitary 
structure factors Uap-a~ (denoted Up, q) and the vector 
set Gram determinafit i sa  K.H. determinant. Different 
choices of vector sets or vector spaces lead to new 
forms of determinants which will be discussed in § III. 
On the other hand, the algebraic and probabilistic 
extension of the K.H. determinant so as to contain 
explicitly atomic positions will be discussed in § II. 

(b) Multivariate probability theory 
The well known Gram determinants have been used 

primarily to obtain information in reciprocal space by 
means of inequality theory. But D,,, (1), may also be 
considered as the determinant of the covariance matrix 
of m random variables which are normalized structure 
factors" Eq=EL n,  q= 1, ,m, where L is a variable - -  q "'" 
vector and Hq a fixed vector. 

It is possible to deduce from this remark the joint 
probability density of these m structure factors, as well 
as other direct-methods formulae (Tsoucaris, 1970). 
One of these formulae is the maximum determinant 
rule which will be used hereafter. These formulae use 
the information contained in a determinant explicitly 
involving reciprocal space. Here we will derive some 
new mathematical relations where direct and reciprocal 
space information is 'mixed'. 

II. Algebraic and probabilistic properties 
of K.H. determinants 

In (a) we recall von Eller's and Goedkoop's  arguments 
and then show their equivalence.* In (b) and (c) we 
develop respectively new algebraic and probabilistic 
properties. 

* This equivalence has been derived independently by Dr G. yon 
Eller (private communication). 
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(a) General form o f  determinants involving atomic vectors. 
Forbidden regions 

{Un} being the set of structure factors of a given 
crystal and r being an atomic position, 

Un - ~ exp (2niH. r) (3) 

is the set of structure factors of an imaginary structure, 
obtained by subtracting an atom from the first one. 
Any K.H. determinant associated with this new struc- 
ture must be non-negative. Let us choose m vectors in 
reciprocal space, denoted by H v (p-- 1,..., m) and con- 
sider the differences Hp--nq (p ,  q = 1,..., m). The corre- 
sponding structure factors of the imaginary structure 
form a square  matrix of order m; we call ~ ,~  its 
determinant (s to account for one atom substracted; 
Table 1). The regions in direct space which are 'for- 
bidden' (for algebraic reasons) are those in which 
~N,,, is negative. Once the phases involved in the 
determinant are known, the forbidden region may be 
computed by mere evaluation of ~ , ,  for any value of r. 

Table 1. ~m,  m-order Gram determinant, the forbidden 
regions K.H.  determinant 

1 
Notation: ev. q = ~ exp 2in(H v -  Hq)r. 

• 

• ° 

Table 2. 6g)+ 1, m +  1-order Gram determinant, propor- 
tional to ~ , , ,  

T h e  d a s h e d  l i n e s  a r e  d r a w n  o n l y  t o  e m p h a s i z e  t h e  s p e c i a l  r o l e  o f  t h e  

last column and row which contain the contribution of the sub- 
1 

tracted atom. Notation: e v = ~ exp 2in(H,, + ~ - Hv). r. 

I 1 . . . . . . .  U1 p ... Ux,,. e] • . , . • . 

 m+,-ib 
1 

/e,  . . . . . .  e~ . . . . . .  e~ .  . . . . .  
/ 

On the other hand, Goedkoop (1952) introduced a 
determinant (Table 2) defined as follows: m vectors 
V v (2) define an ordinary K.H. matrix and the elements 
of the last row are: 

1 
e, = -~ exp [2ni(Hm + l - H v )  . r ] . (3a) 

r is now a 'test atomic position', the same as that of the 
subtracted atom in von Eller's treatment. It is easy to 
show by linear combinations of columns and rows, 
which do not change the value of the determinant, that 
the following form may be given to "m+'S~r) 1 " 

. . . . .  0 i£ 
and we have 

1 ~t( r ) - -  , +  1 - s ~ , , , .  ( 3 b )  

Once U is known, ,s~r) v,,+l can be evaluated by straight- 
forward algebra: 

1 Dm ~, (r)  
,,+1 = -~D,,  N2 ,.., D p q e x p [ 2 n i ( H p - H q ) . r ]  

p , q =  l 

where Dvq is the element of U-1 at intersection of row 
p and column q. Generally the inequality criterion 
defined above is not sufficiently restrictive to allow a 
straightforward determination of the structure, even 
for moderately complex structures. Nevertheless, for a 
special case discussed below in (b) the allowed regions 
are strictly the atomic positions. 

(b) Special case m = N + 1 

Let us consider the determinant of(3) with m = N + 1 ; 
following the same argument as Lajzerowicz & 
Lajzerowicz (1966), it can be shown that s~u+ 1 is 
the product of two Slater determinants given in 
Table 3 (AN+I and Bu+ 1). Factorizing the term i in 
the last row of each of them and calculating the product 
of the resulting matrix (A~+ 1, BN+ 1), it is clear that 
s~u +1 may be expressed as: 

s-@N+l--- (i)2DN+ 1 = -- D'N+ 1 _<0 

where D N + I  is the K.H. determinant of basis vectors 
H1,...,HN+I, product of Aiv+l and B~v+l, associated 
with the N + 1 ('positive') structure atoms at positions 
rl,.. . ,rN, r. ~/v+ ~ is non-positive, and it is null only if 
r coincides with rl, r2, or ...rN. 

Case o f  determinant depending solely on interatomic 
vectors. Moreover, with the following special choice 
of basic vectors: H 1 = H, Hm = mH, HN + 1 = (N + 1)H, 
it has been shown (Knossow, 1975) that the K.H. 
d e t e r m i n a n t  D u  is g i v e n  b y  

DN oc [ ]  sin 2 nil .  (ri- 'rs). (4) 
i < j < N  

In the present case, Det AN+I and Det BN+ 1, which 
are well known as van der Monde determinants may 
be easily calculated: 

Det AN+x = i  I-~ [ e x p ( 2 n i H . r i ) - e x p ( 2 n i H .  rs)] 
O < i < j < N  

Det BN + a = i ~ [exp (-- 2niH.  ri) 
O < i < j < N  

- exp ( - 2niH.  rs) ] 
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and 

~ lv  + 1 = Det As + 1 Det BN + 1 

= -  1-[ [ 2 - 2  cos 2 rcH. ( r i -  r/)] 
O < i < j < N  

o c -  I-I sin 2 [rcH.(r i - r / ) ] .  
O < i < j < N  

We retrieve, of course, the preceding results on the 
sign of ~ N + I  and obtain the form of the maximum 
reached when r is in the neighbourhood of an atomic 
position: 

S ~ N  + 1 = -- /£ [ r -  ril 2, /£ positive. (5) 

(c) Probabilistic restrictions inside the allowed regions 
We have seen that, generally, the constraint imposed 

by the positivity of the 'forbidden regions determinant'  
is not restrictive enough to determine unambiguously 
the atomic positions. The probability theory may, 
however, give a better criterion, the maximal character 
of 6 ~ ,  (or ~m). 

We suppose here that the structure consists of N 
atoms, and that all the elements of D,, are known, in 
modulus and phase. A determinant 6~)+, may then be 
built, by edging Dm with a column and row labelled by 
the reciprocal space vector L, the general element of 
which is: 

1 
ep = ~ exp [2rci(L-Hp). r]. 

First we write ~ ) 1  as"  

~i(mr)+l:Dm{~_ - p,2"q -~-~-expx-'opq - [2rci(Hp-Hq). r ] j .  

Then we make use of the 'maximum determinant rule' 
(Tsoucaris, 1970) to deduce the maximal character 
of 6~)+ 1 at a true atomic position. Under the usual 
assumption of the equipartition of atomic positions and 
of their statistical independence, a well known result 
is the maximal character of the following expression 
for the true value of phases of EL-rip (P= 1,m), once 
the elements of D,, are known: 

L 1 
A,, +, __ "re = 1 -- ~ EL- LDpq (6) 

D m  - N  u p E n q  - . 
P ,q  

Here we denote by A L+, the determinant defined by 
Tsoucaris [1970, formula (7)-]; this determinant does 
not depend explicitly on atomic coordinates, as 
opposed to 6~)+ ~. 

Next, ZL is expanded: 

1 { ~ ,  
zr = 1 - ~-~ j exp [2rci(Hp-Hq). rj] 

3 

+ ~ exp 2rci[Hq. r j - H , ,  r i+  L.  ( r i -  rj)]~ Dpq. 
j e i  ) 

Averaging over L in reciprocal space, and assuming 
the independence of the atomic positions, cross- 
terms vanish and we obtain: 

1 
(Ze>L= 1 - ~-~ Z [~. exp 27ti(Hq-Hp). rj]Dpq 

pq J 

= 1 - Tr t.l- 1C, (7) 

C being the matrix of atomic contributions. After 
inverting the double sum, the atomic contributions 
appear: 

,g(rj) 

~ /  Vm+ 1 __ E z(r j ) .  (7a )  
<ZL> L = --" O m j 

The terms of the second member having statistical 
independence and being positive, their sum is maximal 
only if any one of them is maximal. We so reach the 
required result" at any coincidence of r with an atomic 
position, 

z(r)-- ~(mr) l (7b) 
Dm 

reaches a (relative) maximum. This result provides us 
with a new way of determining atomic position using 
6~)+, as a 'most probable region determinant';  how- 
ever it needs the knowledge of some 100-200 phases 
for a current structure; Gram determinant theory, 
developed in the next paragraph, may give a way of 
overcoming this drawback. 

III. N e w  Gram determinants  

Instead of the Hilbert space defined by (2), we will set 
up determinants in the tensorial square of it. We 
introduce now Vp vectors associated with each recip- 
rocal lattice vector Hp: 

N N 
Vp= ~ ~ [gigjexp 2rciHp.(ri-rj)]eq. (8) 

i=1 j = l  

It is clear that this vector set may be obtained by the 
same derivation as in § I(a), starting from the Patterson 
function instead of the electron density function. The 
scalar products of these vectors are the squared moduli 
of unitary structure factors: 

Table 3. AN + x and BN + 1, Slater determinants of  order N + 1, N being the number of atoms in a unit cell. Their product 
is a K.H. forbidden region determinant 

Notat ion:  e i . i = N - a / 2  exp (2inhi. ri). a corresponds to the subtracted atom, at position r. 

= e t. 1 e l ,  z . . . . . .  e t, ,v ie 1.a e l , ,  e l .  2 . . . . . .  e l ,  N ie'l, 
e z ,1  e l . z  . . . . . .  ez ,  u iez ,a  e'z.1 e2,2  . . . . . .  e'2,u ie'2,a 

A N + a  • . B N + I  = . • . . 
eu.  1 eu,  z . . . . . .  eN, u ieu, o e'u, 1 e'N, 2 . . . . . .  e'N, N ie'N,, 
eN+x,1 e N + l , 2  . . .  eN+a,N ieN+~,a eN+l,~ eN+~,2 . - .  e n + l , N  ie*N+l,a 
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N N 
(Vp. Vq)= E E 2 2 [gi gj exp 21ri(Hp-Hq). ( r i - r  j)] 

i=1 j = l  
=lVp,~l 2, 

Next, we will build up new Gram determinants 6m+1 
starting from the above vector set, by addition of one 
or more vectors belonging to the same space. Doing 
so we will exploit the restriction set up on the elements 
of the last column and row, because of the known 
'inner part '  D,. of the new determinant (which is the 
Gram determinant of the vectors V~,...,V,.). In a 
different context the same step has been used in the 
regression equation and related formulae (de Rango, 
1969; de Rango, Tsoucaris & Zelwer, 1974). We shall 
provide evidence that the true values of the parameters 
governing variations in the last-column elements reach 
their most probable value when the determinant 
reaches its maximum. 

(a) A determinant involving phases, moduli and the 
atomic model 

To the m vectors of (8) we add the following: 

Vm+l = 2 {g~gj exp [2rciHm. 1. (r~-rj)]}% 
i=1 j=l 

n, n' < N 

where i and j describe two independent subsets of 
atoms of the N structure• Let us write the last column's 
elements of ~,.+1 for n '=  N, as" 

(Vm+l Vq ) =  E 2 2 • g~ gj exp [Dri(H,.+ 1 -Hq)  
i=1 j = l  

. ( r i - r j ) ]  

which is written: 

(V,.+ ~. Vq) = g2 exp [27ti(H,.+ ~-Hq). ri 
i 

x g~ exp [-2rci(H,. + 1 -Hq) .  rj 
J 

(Vm+l • Vq) = g~ exp [2rci(H,.+~-Hq). r~ U,.+ 1,q 
i 

(Vm+ 1. V~) = Cm+ ~. ~Cr;,+ 1.q, (9) 

denoting C,. + 1, q the contribution of the n atoms subset 
to the structure factor Um+ 1, ~. 

This formula shows that, whereas the principal 
minor of order m of the determinant involves only 
moduli, last column and row elements involve both 
phases (in Um+ 1,q) and an atomic model (in Cm+l,q). 
This formalism allows us to select from among the 
sets of phases and atomic models provided by multi- 
solution methods the most probable ones, i.e. those 
which maximize the determinant value. 

(b) A determinant involving moduli and stereochemistry 
We take now a different choice of the last row vector 

as follows: 

Vm+ 1 = ~ ~ [gigjexp(2=iH"+ 1).(ri--r)]e/j  
i=1 j = l  

n < N ;  

i and j describe here the same subset of the structure's 
atoms (a partial model or a fragment), all other vectors 
Vp are given by (8). 

Let us write the element of the qth column and last 
row in the obtained Gram determinant: 

(Vm+ 1 Vq) ~ ~'~ 2 2 1--Hq) • = gi g j  e x p  [2rti(Hm+ 
i=1 j = l  

. ( r i - r j ) ]=lC"+l .q[  2. (10) 

These elements depend only on the interatomic vectors 
of the subset, they are the square of the moduli of the 
fragment contribution to the unitary structure factors. 
For a given stereochemistry of the fragment, they 
depend only on its orientation and not on its position 
in the unit cell. The three orientational parameters of 
this fragment are the only parameters governing the 
6,.+ 1 (01,02,03) value. We develop in § IV(b) a practical 
application of this determinant. For the translation 
case a similar procedure may be developed. 

IV. Practical application 

Among the various theoretical aspects developed 
above, two formulae have been explored through 
numerical calculations: equation (7b) (of § IIc), in- 
volving phase information, has been tested on a real 
structure; equation (10) (of § IIIb), involving only 
moduli, has been used to develop a structure deter- 
mination method, ab initio. 

(a) Determination of atomic positions via the use of the 
'most probable regions determinant' 

In this application, most probable regions are deter- 
mined by subtracting one atom from the unit cell. 
First calculations have been performed on the centro- 
symmetric structure of jamine (space group P 1) having 
48 atoms in the unit cell (Karle & Karle, 1964) with 

o:4 o:, o:, 

ii 
Fig. 1. Variations of sN,, (on an arbitrary scale) as a function of the 

position of the subtracted atom on an axis defined by x =0.940, 
z=0.500. The arrow indicates the true atomic position. 
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calculated structure factors; we used the form of the 
most probable regions determinant denoted s@~ in 
§ II(a). We have shown in § II(c) that 6~),1 reaches a 
maximum at an atomic position, as does s~m which is 
proportional to it. A one-dimensional plot of S~m 
clearly shows that the atomic positions are unam- 
biguously determined from the maximal character of 
~ m  (Fig. 1). 

Next, another attempt has been performed with the 
experimental data of a protein structure, that of 
insulin (space group R3), by using a 400-order deter- 
minant with observed moduli down to 1-5 A resolution, 
and refined phases obtained from the maximal deter- 
minant method (de Rango, Mauguen & Tsoucaris, 
1975). Fig. 2 shows clearly that the maxima of the z(r) 
function coincide with those of the electron density 
0(r). Hence this function can be used in a new fast 
refinement process which is under investigation. 

(b) Introduction of the stereochemistry in determining 
the most probable regions 

Performing most probable region calculations 
with the help of von Eller's formalism [-or using the 
equivalent determinant ~)+1] already needs the 
knowledge of the phase of 100-200 structure factors. 
However, valuable information may be obtained from 
the stereochemistry of a fragment of the structure and 
from the moduli of the structure factors. Indeed most 
probable region calculation, using the determinant 
(~m+1(01,02,03) obtained in § Ill(b) (see Table 4), is 
equivalent to assigning the most probable position 
of the pseudo-atoms set associated with a stereo- 
chemically known fragment, among the whole set of 
pseudo-atoms in the vector space. The same problem 
has been studied by using rotation functions (Tollin, 
1966; Rossmann, 1972); it is shown in the Appendix 
that the second-order term of the determinant 
t~m+ 1(01,02, 03) expansion is proportional to a rotation 
function. 

Before giving a practical application, we set forward 
symmetry considerations which permit a reduction of 
the computing time and make the determination of 
most probable regions possible for any structure of 
current importance (40 atoms in the asymmetric unit). 

) 

(a) (b) 

Fig. 2. (a) A section of the insulin electron density 0(r). (b) The same 
section of the z(r) function. The shaded points indicate the position 
of the sulphur atoms according to the model structure. 

Table 4. 6m + 1(01,02, 03), (m 4-1)-order determinant 
The last column and row contain the squared contribution to the 
structure factors of an oriented fragment which is stereochemically 
known (they depend on 01,02,03). The inner part contains only 
observed moduli. 

1 
I u 2 , , I  2 

IOm.,I ~ 

[C,I 2 

[U1.212 . . .  IUl,m[ 2 IC~l z 
1 . . . . . . . .  [Uz.m[ 2 1C212 

]Urn ,  2[ 2 . . .  1" [Cm[ 2 

it212 . . . . .  Icml 2 g:g  
i = 1  j = l  

We will deal successively with the building of the 
determinant and the scanning range of orientational 
parameters. 

Recent experience in determinant construction 
shows that the information they contain becomes 
practically useful only for an order of (N/4-N/IO), 
N being the number of atoms in the unit cell. Since the 
number of atoms in a pseudo-atom structure is roughly 
the square of that of the associated structure, some 
mathematical device must be used to reduce the order. 
Goedkoop's determinants (Goedkoop, 1952; Mau- 
guen, de Rango & Tsoucaris, 1973) provide an 
appropriate way for doing so: a K.H. determinant 
may be factorized in s Goedkoop determinants (s 
being the space-group order of the structure) and this 
last determinant becomes efficient for an order (N/4s- 
N/lOs). A Goedkoop determinant may be built up from 
any representation of the structure space group; but we 
limit ourselves to the totally symmetric one: it can be 
shown that this representation is the only one that 
allows us to take into account all special reflexions as 
basic elements (Knossow, 1975). We report on Fig. 3 
the variation of the ratio Dm+ 1~Din as a function of its 
order m; it can be noted that the observed ratio's value 
is always lower than the theoretical mean value 
(1-m/N). 

iiilr 
0'85 [ ee • 

| " • _ 
]oo 200 30o n~ 

Fig. 3. Variations of the actual value of the ratio (mm+l/mm) as a 
function of the determinant's order m. The straight line indicates 
the theoretical mean value (1 -re~N). 



124 STRUCTURE FACTORS AND DIRECT SPACE INFORMATION 

Scanning range of orientational parameters. Cheshire 
groups 

The computing time of most probable regions 
depends on the order of the determinant involved as 
well as on the range to be scanned by the parameters. 
The problem of range determination has been studied 
by Hirshfeld (1968). The main result obtained by this 
author is the following: to avoid redundancies and to 
be exhaustive, the parameters must scan the asymme- 
tric unit of the associated Cheshire group, taking into 
account also the symmetry group of the oriented frag- 
ment (we recall that the Cheshire group of a structure, 

c2 : 
Fig. 4. The stereochemically known fragment of TOT. The three 

identical fragments which build the molecule are bound through 
the oxygen and starred carbon atoms. 
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Fig. 5. Rotation search for the orientation of the stereochemically 
known fragment of TOT. The variations of the determinant are 
scaled to the interval ( -  1000, 1000). Dots indicate the true posi- 
tions of the fragment. 

as defined by Hirshfeld, leaves invariant as a whole the 
equivalent positions and the crystallographic axes). 

Application to real structures 
Here we limit ourselves to the use of the determinant 

t~m+ 1(01,02,03)(see Table 4) obtained in § III(b). As this 
determinant involves only the moduli of the structure 
factors and the stereochemistry of a fragment of the 
structure, we will compare our results with those of a 
Patterson search method. 

The calculations have been carried out for the struc- 
ture of tri-o-thymotide, TOT, containing 40 atoms in 
the asymmetric unit (Brunie & Tsoucaris, 1974). The 
TOT molecule consists of three identical fragments 
which are stereochemically known (see Fig. 4). We 
determined most probable regions in the space of 
Euler angles of the oriented fragment, using a 340- 
order Goedkoop determinant. According to the 
Cheshire group symmetry, the scanning range of the 
parameters (01,02,03) is for P212121. 0<01<rc/2, 
0 ~  0 2 < r e / 2 ,  0 < 0  3 ~ 7 ~ .  

Scanning this range, strictly we should find three 
maxima of the most probable region determinant. But 
as can be seen on Fig. 4, the pseudo-atom set of a 
fragment is left nearly invariant in a k~/3 (k=1,6) 
rotation about the axis normal to the benzene ring. So 
we must expect 18 peaks in the whole range. 

Remembering that D,, is constant, the equi-deter- 
minant contour drawn in Fig. 5 indicates the level of 
750 when 1000 corresponds to the absolute maximum 
which can be reached by Gl°1'°2'°3)/G,, [G,,,+I and G,, 
are the symmetry-adapted determinants associated, 
respectively, with 6g)+ 1 and D,, defined by (10)]. Three 
of the twenty highest zones do not correspond to a 
fragment orientation; however, their associated peaks 
are among the lowest. On the other hand, one of the 
true positions is 15 ° from a maximum. But for these 
spurious determinations the fragment orientation is 
fairly well represented by the maxima of the 'most 
probable region determinant' variations. 

In response to a pertinent comment of the referee 
we compare in Table 5 our results with those of a 
Patterson search method (Braun, Hornstra & Leen- 
houts, 1969) (program kindly supplied by J. J. Horn- 
stra). The results of the determinant method seem 
encouraging; moreover, in difficult cases the choice 
of a better determinant may improve the contrast. 
Further improvements under investigation may lead 
to easier and fairly fast exploitation of this method. 

Table 5. Comparison of the results of the determinant 
method and of the Patterson search method 

Notation: P.V. value of the function on a correct position, M.V. mean 
value of the calculated function. P1 : IP.V.-M.V.[/M.V. P2: percentage 
of points associated with a height above (P.V.- 15~ M.V.). 

P1 P2 
Patterson search method 22~ 10~o 
Determinant method 42~ 4~o 
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A P P E N D I X  

First terms of  6m+l expanded in powers of I U[2 

We show here that the first term of the (~m + 1 expansion 
may be expressed as a rotation function. The term in 
the 6m+1 development depending on the orientation 
of the unknown fragment can be written: 

6 ~ . + 1 = -  ~ ~ (--1)P+q6pqICL-@ZlCL-nql 2, (A1) 
p=l q=l 

6pq being the cofactor of the Dm element in column q 
and row p. 

The first term in the 6pq expansion in powers of U 2 
is written: 

(~(2):(__ 1)q' p I[UHq_Hp[2 (A2) pq 

and we have the first term of the 6.,+1 expansion in 
powers of [U[2: 

~2, ~ ~ IU._.,I~ICL_.~I21CL_.~I 2. (A31 m+l 
p=l q=I 

Let us denote by P(r) the Patterson function of the 
crystal and by Prot(r) the Patterson function of the 
rotated unknown fragment, then 

P(r) = y" I g @  2 exp 2ircHp. r 
p=l 

p2ot(r ) oc ~ ICHp,121CHq, I 2 exp 2irc(Hp,-Hq,). r. 
p'q' 

The integral of P(r)pEot(r) in the unit cell is written 

'=fvcP(r)pr2°t(r)dz °Civc(~plUnp[2exp2irttp'r) 

× [ y" ICnp,12lCnq, I 2 exp 2irc~-Ip,-Hq,)r]dz 
p'q' 

I oc ~ IU.~lEICL_.ffICL_.¢l 2 
p, p', q' 

x ~ exp 2ircltp q-np,-Hq,).  rd'~. 
,)v C 

The integral differs from zero only if l i p = - ( H p , -  
He). Using the index transformation" Hp ,=L-Hp, , ,  
Hq,-= L-Hq,, ,  the integral becomes 

vcP(r)p2rot(r) dz 

- 12. (A4) 
- ~' IUnp,,_nq,,IEICL_np,,IEICL-nq,, 

p",q" 

Comparison with (A3) shows clearly that the rotation 
function involving P(r) and p2ot(r) is the first term in 
the expansion of ~m + 1. 
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